الاحتمال : Probability
في الرياضيات, النسبة بين عدد الحالات الملائمة لوقوع حادث معين ومجموع الحالات الممكنة الأخرى. يعتبر باسكال (1623 - 1662) واضع أسس نظرية الاحتمال, في حين يعتبر جاكوب برنولي ( 1654 ـ 1705 ) صاحب الفضل في تطويرها كفرع من الرياضيات. وإذا كان باسكال قد عني بدراسة "الاحتمال" في ما يتصل بألعاب الحظ, فإن برنولي قد ذهب إلى أبعد من ذلك فعني بدراسة "الاحتمال" في مجالات مدنية وأخلاقية واقتصادية مختلفة. ومن أشهر من توفر على دراسة "الاحتمال" أيضا المركيز دو لا بلاس (1749 - 1827).
الإحداثيات : Coordinats
في الهندسة, هي بوجه عام الأبعاد التي يتعين بها موضع نقطة ما على خط أو مستو أو في حيز بالنسبة إلى بعدها عن نقطة ثابتة. وتتألف الإحداثية من عدد واحد إذا كان المراد تحديد موضع نقطة على خط, ومن عددين إذا كانت النقطة على مستو, ومن ثلاثة أعداد إذا كانت النقطة في حيز. وتعرف هذه الإحداثيات كلها ب- "إحداثيات النقطة". أما الإحداثيات الديكارتية Cartesian Coordinates, ويقال لها أيضا "الإحداثيات المتعامدة" , فهي الأبعاد التي يتعين بها موضع نقطة ما بالنسبة إلى المحاور الديكارتية المتخذة.
الأرقام الرومانية : Romain Numerals
حروف من الألفباء الرومانية استخدمت لتقوم مقام الأرقام حتى القرن التاسع للميلاد, حين استعيض عنها بالأرقام العربية. وهي تصطنع اليوم في صناعة الساعات وفي رؤوس فصول الكتب ولأغراض التصنيف والتبويب.
الأرقام العربية : Arabic Numerals ; Arabic Figures
أرقام هندية الأصل, ترسم على هذه الصورة 1 2 3 4 5 إلخ. أدخلها العرب إلى أوروبا منذ القرن التاسع للميلاد فحلت محل الأرقام الرومانية فيها.
الإنطاق ؛ حذف الجذور : Rationalization
في الرياضيات, عملية تحويل الكسر الذي مقامه عدد أصم أو كمية صماء Irrational إلى كسر مقامه عدد منطق أو كمية منطقة Rational (را. أيضا: العدد المنطق).
التبدلة : Permutation
في الرياضيات; أي من الصور الممكن تكوينها بتغيير مواقع العناصر التي يتألف منها رقم ما. إن تبادل الرقم 234 مثلا هي 342 324 432 423 وأخيرا 243.
الجيب ؛ جيب الزاوية : Sine
في علم المثلثات, نسبة المقابل إلى الوتر. يعني طول الضلع المقابل للزاوية الحادة (وقد رمز إليه في الشكل بحرف P) مقسوما على طول الضلع المقابل للزاوية القائمة, وهو ما يعرف بوتر المثلث ذي الزاوية القائمة Hypotenuse (وقد رمز إليه في الشكل بحرف H). وهكذا يكون جيب الزاوية الحادة مساويا ل- P
الجيوديسيا : Geodesy
فرع من الرياضيات التطبيقية, يعنى بالدراسة الجيولوجية لحجم الأرض وشكلها, وقياس أجزاء واسعة من سطحها. ليس هذا فحسب, بل إن الجيوديسيا تدرس التفاوت في الجاذبية والمغنطيسية الأرضيتين أيضا. والجيوديسيا الحديثة تقسم إلى شعب أربع: الجيوديسيا الهندسية والجيوديسيا الطبيعية والجيوديسيا الفلكية والجيوديسيا القمريصنعية, وذلك تبعا للوسائل التي تستعين بها على حل مشكلاتها. ولم تنشأ الجيوديسيا القمريصنعية إلا بعد إطلاق القمر الصنعي الأول عام 1957.
حساب التفاضل : Calculus
فرع من الرياضيات العالية ينقسم إلى شعبتين: حساب التفاضل Differential Calculus وهو يعنى في المقام الأول بنسبة تغير الدالات أو الدوال Functions بالقياس إلى متغيراتها المطلقة Variables, وحساب التكامل Integral calculus وهو يعنى بإيجاد التكاملات Integrals وبدراسة خواصها. ينسب استنباط حساب التفاضل والتكامل إلى لا يبنتز ولكن العرب هم الذين مهدوا السبيل لهذا الاستنباط.
الدالة : Function
في الرياضيات, كمية تتوقف قيمتها على قيمة كمية أخرى أو كميات أخرى تدعى المتغيرات المستقلة. ومن الأمثلة النموذجية على ذلك حجم الكرة المتمددة الذي يعتبر دالة لأنه رهن بطول شعاع (أو نصف قطر) تلك الكرة, ومقدار الضغط الجوي الذي يعتبر دالة أيضا لأنه رهن بمقدار الارتفاع عن سطح البحر.
الدائرة : Circle
شكل مستو محاط بخط منحن مغلق, نقاطه كلها متساوية الأبعاد عن نقطة داخلية ثابتة تدعى "المركز" , ويدعى الخط المنحني المحيط بالدائرة "المحيط" , في حين يدعى الخط المستقيم الذي يقسم الدائرة ومحيطها إلى قسمين متساويين والذي يمر بمركزها "القطر" . و "الشعاع" هو نصف القطر ويعرف بأنه المسافة بين مركز الدائرة وأية نقطة من محيطها. أما الخط المستقيم الواقع بين نقطتين من محيط الدائرة من غير أن يمر بمركزها فيدعى "الوتر". تتألف الدائرة من 360 درجة, وتتألف كل درجة من ستين دقيقة (را. الدقيقة).
الدقيقة : Minute
وحدة لقياس الوقت, تساوي 60/1 من الساعة. وهي تتألف, بدورها, من ستين ثانية, وبذلك تساوي الثانية 60/1 من الدقيقة. أما في الرياضيات فالدقيقة وحدة لقياس الزاوية. تتألف الدائرة من 360 درجة, وتتألف كل درجة من ستين دقيقة.
الدويري : Cycloid
خط منحن تحدثه أيما نقطة من نقاط محيط الدائرة أو الطارة المتدحرجة في سطح مستو. فإذا دار دولاب دراجة هوائية على طريق مستوية استواء تاما فإن كل نقطة في المحيط الخارجي للدولاب تشكل دويريا منذ أن تمس الأرض أول مرة إلى أن تعاود مسها من جديد, متممة بذلك دورة كاملة. يكون طول الدويري أربعة أضعاف قطر الدائرة أو الطارة التي أحدثته.
رباعي الأضلاع : Quadrilateral
في الهندسة, شكل ذو أربعة أضلاع وأربع زوايا. ورباعي الأضلاع يدعى "المنحرف" أو "المعين المنحرف" trapezium حين لا يكون بين أضلاعه ضلعان متوازيان. فإذا كان بين أضلاعه ضلعان متوازيان دعي " شبه المنحرف" Trapezoid. أما حين يكون زوجان من أضلاعه متوازيين فيدعى "متوازي الأضلاع" parallelogram.
الرسم البياني : Graph
رسم يمثل معطيات رقمية معينة أو يمثل العلاقة الوظيفية بين مجموعتين من الأرقام. والواقع أننا كثيرا ما نمثل ذلك من طريق الجداول أو من طريق المعادلات. ولكن الرسوم البيانية كثيرا ما تفضل على الجداول والمعادلات ليسرها ووضوحها, فهي تبصرنا - بمجرد النظر الخاطف إليها - بكل ما يحاول واضعوها إبلاغنا إياه بواسطتها. والرسوم البيانية ضروب متعددة أكثرها صيرورة الرسم البياني القضيبي Bar graph , والرسم البياني منــكسر الخط Broken - line graph , والرسم البياني الدائري Circular Graph.
في الرياضيات, النسبة بين عدد الحالات الملائمة لوقوع حادث معين ومجموع الحالات الممكنة الأخرى. يعتبر باسكال (1623 - 1662) واضع أسس نظرية الاحتمال, في حين يعتبر جاكوب برنولي ( 1654 ـ 1705 ) صاحب الفضل في تطويرها كفرع من الرياضيات. وإذا كان باسكال قد عني بدراسة "الاحتمال" في ما يتصل بألعاب الحظ, فإن برنولي قد ذهب إلى أبعد من ذلك فعني بدراسة "الاحتمال" في مجالات مدنية وأخلاقية واقتصادية مختلفة. ومن أشهر من توفر على دراسة "الاحتمال" أيضا المركيز دو لا بلاس (1749 - 1827).
الإحداثيات : Coordinats
في الهندسة, هي بوجه عام الأبعاد التي يتعين بها موضع نقطة ما على خط أو مستو أو في حيز بالنسبة إلى بعدها عن نقطة ثابتة. وتتألف الإحداثية من عدد واحد إذا كان المراد تحديد موضع نقطة على خط, ومن عددين إذا كانت النقطة على مستو, ومن ثلاثة أعداد إذا كانت النقطة في حيز. وتعرف هذه الإحداثيات كلها ب- "إحداثيات النقطة". أما الإحداثيات الديكارتية Cartesian Coordinates, ويقال لها أيضا "الإحداثيات المتعامدة" , فهي الأبعاد التي يتعين بها موضع نقطة ما بالنسبة إلى المحاور الديكارتية المتخذة.
الأرقام الرومانية : Romain Numerals
حروف من الألفباء الرومانية استخدمت لتقوم مقام الأرقام حتى القرن التاسع للميلاد, حين استعيض عنها بالأرقام العربية. وهي تصطنع اليوم في صناعة الساعات وفي رؤوس فصول الكتب ولأغراض التصنيف والتبويب.
الأرقام العربية : Arabic Numerals ; Arabic Figures
أرقام هندية الأصل, ترسم على هذه الصورة 1 2 3 4 5 إلخ. أدخلها العرب إلى أوروبا منذ القرن التاسع للميلاد فحلت محل الأرقام الرومانية فيها.
الإنطاق ؛ حذف الجذور : Rationalization
في الرياضيات, عملية تحويل الكسر الذي مقامه عدد أصم أو كمية صماء Irrational إلى كسر مقامه عدد منطق أو كمية منطقة Rational (را. أيضا: العدد المنطق).
التبدلة : Permutation
في الرياضيات; أي من الصور الممكن تكوينها بتغيير مواقع العناصر التي يتألف منها رقم ما. إن تبادل الرقم 234 مثلا هي 342 324 432 423 وأخيرا 243.
الجيب ؛ جيب الزاوية : Sine
في علم المثلثات, نسبة المقابل إلى الوتر. يعني طول الضلع المقابل للزاوية الحادة (وقد رمز إليه في الشكل بحرف P) مقسوما على طول الضلع المقابل للزاوية القائمة, وهو ما يعرف بوتر المثلث ذي الزاوية القائمة Hypotenuse (وقد رمز إليه في الشكل بحرف H). وهكذا يكون جيب الزاوية الحادة مساويا ل- P
الجيوديسيا : Geodesy
فرع من الرياضيات التطبيقية, يعنى بالدراسة الجيولوجية لحجم الأرض وشكلها, وقياس أجزاء واسعة من سطحها. ليس هذا فحسب, بل إن الجيوديسيا تدرس التفاوت في الجاذبية والمغنطيسية الأرضيتين أيضا. والجيوديسيا الحديثة تقسم إلى شعب أربع: الجيوديسيا الهندسية والجيوديسيا الطبيعية والجيوديسيا الفلكية والجيوديسيا القمريصنعية, وذلك تبعا للوسائل التي تستعين بها على حل مشكلاتها. ولم تنشأ الجيوديسيا القمريصنعية إلا بعد إطلاق القمر الصنعي الأول عام 1957.
حساب التفاضل : Calculus
فرع من الرياضيات العالية ينقسم إلى شعبتين: حساب التفاضل Differential Calculus وهو يعنى في المقام الأول بنسبة تغير الدالات أو الدوال Functions بالقياس إلى متغيراتها المطلقة Variables, وحساب التكامل Integral calculus وهو يعنى بإيجاد التكاملات Integrals وبدراسة خواصها. ينسب استنباط حساب التفاضل والتكامل إلى لا يبنتز ولكن العرب هم الذين مهدوا السبيل لهذا الاستنباط.
الدالة : Function
في الرياضيات, كمية تتوقف قيمتها على قيمة كمية أخرى أو كميات أخرى تدعى المتغيرات المستقلة. ومن الأمثلة النموذجية على ذلك حجم الكرة المتمددة الذي يعتبر دالة لأنه رهن بطول شعاع (أو نصف قطر) تلك الكرة, ومقدار الضغط الجوي الذي يعتبر دالة أيضا لأنه رهن بمقدار الارتفاع عن سطح البحر.
الدائرة : Circle
شكل مستو محاط بخط منحن مغلق, نقاطه كلها متساوية الأبعاد عن نقطة داخلية ثابتة تدعى "المركز" , ويدعى الخط المنحني المحيط بالدائرة "المحيط" , في حين يدعى الخط المستقيم الذي يقسم الدائرة ومحيطها إلى قسمين متساويين والذي يمر بمركزها "القطر" . و "الشعاع" هو نصف القطر ويعرف بأنه المسافة بين مركز الدائرة وأية نقطة من محيطها. أما الخط المستقيم الواقع بين نقطتين من محيط الدائرة من غير أن يمر بمركزها فيدعى "الوتر". تتألف الدائرة من 360 درجة, وتتألف كل درجة من ستين دقيقة (را. الدقيقة).
الدقيقة : Minute
وحدة لقياس الوقت, تساوي 60/1 من الساعة. وهي تتألف, بدورها, من ستين ثانية, وبذلك تساوي الثانية 60/1 من الدقيقة. أما في الرياضيات فالدقيقة وحدة لقياس الزاوية. تتألف الدائرة من 360 درجة, وتتألف كل درجة من ستين دقيقة.
الدويري : Cycloid
خط منحن تحدثه أيما نقطة من نقاط محيط الدائرة أو الطارة المتدحرجة في سطح مستو. فإذا دار دولاب دراجة هوائية على طريق مستوية استواء تاما فإن كل نقطة في المحيط الخارجي للدولاب تشكل دويريا منذ أن تمس الأرض أول مرة إلى أن تعاود مسها من جديد, متممة بذلك دورة كاملة. يكون طول الدويري أربعة أضعاف قطر الدائرة أو الطارة التي أحدثته.
رباعي الأضلاع : Quadrilateral
في الهندسة, شكل ذو أربعة أضلاع وأربع زوايا. ورباعي الأضلاع يدعى "المنحرف" أو "المعين المنحرف" trapezium حين لا يكون بين أضلاعه ضلعان متوازيان. فإذا كان بين أضلاعه ضلعان متوازيان دعي " شبه المنحرف" Trapezoid. أما حين يكون زوجان من أضلاعه متوازيين فيدعى "متوازي الأضلاع" parallelogram.
الرسم البياني : Graph
رسم يمثل معطيات رقمية معينة أو يمثل العلاقة الوظيفية بين مجموعتين من الأرقام. والواقع أننا كثيرا ما نمثل ذلك من طريق الجداول أو من طريق المعادلات. ولكن الرسوم البيانية كثيرا ما تفضل على الجداول والمعادلات ليسرها ووضوحها, فهي تبصرنا - بمجرد النظر الخاطف إليها - بكل ما يحاول واضعوها إبلاغنا إياه بواسطتها. والرسوم البيانية ضروب متعددة أكثرها صيرورة الرسم البياني القضيبي Bar graph , والرسم البياني منــكسر الخط Broken - line graph , والرسم البياني الدائري Circular Graph.